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Stability of Homogeneous Extra Dimensions
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Abstract. In order not to be in conflict with observations it is crucial that extra dimensions, if they
exist, are stable. It is shown that in the context of homogeneous extra dimensions, this can easily
be achieved during both (4D) radiation and vacuum energy dominated eras of the cosmological
evolution. During matter domination, however, there is no such possibility even for a very general
class of stabilization mechanisms. Even if extra dimensions could be stabilized during matter
domination, it is argued that they are generically time-varying during any transition period, such
as the one from radiation to matter domination.

INTRODUCTION

The idea that our world may consist of more than four space-time dimensions, with extra
spatial dimensions compactified on some small scale, was first proposed by Nordström,
Kaluza and Klein [1]. One of the main motivations for these and subsequent works was
the hope for a possible unification of all interactions (see e.g. [2] for a review on Kaluza-
Klein theories). Recent years have seen a great revival of interest in extra-dimensional
scenarios, most notably due to the influence of string theory.

Cosmology provides an important testing ground for theories involving extra dimen-
sions. For example, a generic prediction of these theories is that (some of) the fundamen-
tal coupling constants vary with the volume of the internal space. However, the strong
cosmological constraints on the allowed variation of these’constants’ (see for example
[3]) require the extra space to be not only compactified, but also stabilized, at a time no
later than big bang nucleosynthesis (BBN). One of the main tasks is therefore to find
a dynamical explanation for this stabilization and to reproduce standard cosmology for
late times.

Here, we will study the prospects for stabilizing homogeneous extra dimensions
for a wide range of available stabilization mechanisms. We find that while the extra
dimensions can easily be stabilized during both radiation and vacuum energy dominated
periods of the cosmological evolution, one encounters generic problems during matter
domination. For illustrative reasons, the analysis is doneboth for the Friedmann-like
field equations that are obtained from the higher-dimensional action as well as for the
dimensionally reduced and conformally transformed four-dimensional effective action.
Of course, these two approaches are equivalent and lead to the same conclusions. The
direct comparison, however, helps to clarify hidden subleties and leads to some insight
into how one has to interpret the results. For previous work on the stabilization of
homogenous extra dimensions see e.g. [4, 5] and references therein.



THE HIGHER-DIMENSIONAL FRIEDMANN EQUATIONS

In the following we shall adopt the notation and conventionsof [6] and consider a
(3+1+n) - dimensional spacetime with a metric

gAB dXAdXB = −dt2+a2(t)γi j dxidx j +b2(t)γ̃pq dypdyq , (1)

whereγi j and γ̃pq are maximally symmetric metrics in three andn dimensions, respec-
tively.1 Spatial curvature is thus parametrized in the usual way byka = −1,0,1 in or-
dinary andkb = −1,0,1 in the compactified space. Using such a metric with two time-
dependent scale factorsa(t) andb(t) is a natural, though obviously rather simplified,
way to describe the evolution of the higher-dimensional universe (see, e.g. [2]).

The choice of the metric determines the energy-momentum tensor to be of the form

T00 = ρ , Ti j = −paγi j , T3+p3+q = −pbγ̃pq , (2)

which describes a homogeneous but in general anisotropic perfect fluid in its rest frame.
From the field equations,

RAB −
1
2

RgAB +ΛgAB = κ2TAB , (3)

one now finds the higher-dimensional version of the ordinaryFriedmann equations [6]:
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ȧ
a

ḃ
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where a dot denotes differentiation with respect tot.

STATIC SOLUTIONS AND STANDARD COSMOLOGY

One usually assumes that compactification and stabilization of the internal space can be
attained dynamically by introducing background fields. Since their role is to separate
ordinary space from the extra dimensions they typically contribute an effective action

Sbg = −
∫

d4+nX
√
−gW (b) (7)

1 For a separable spacetime the internal space actuallyhas to be an Einstein space as a consequence of the
field equations [7]. This slightly more general case does notchange our results concerning the stability of
the extra dimensions.



to the theory [8, 2]. Examples of concrete mechanisms include gauge-fields wrapped
around two extra dimensions [9] and the generalization of this to the Freund-Rubin
mechanism [10], as well as stabilization by the Casimir effect [11].

The energy-momentum tensor corresponding to the action (7)takes the form

T bg
00 = ρbg, T bg

i j = −pbg
a γi j , T bg

3+p3+q = −pbg
b γ̃pq . (8)

Let us now assume that a stabilization mechanism due to background fields is at work,
i.e. b(t) = b0 is constant at late times. Since these fields also contributeto the energy-
momentum tensor, we replaceρ → ρ +ρbg andpa,b → pa,b + pbg

a,b in the field equations
(4 - 6). All contributions to the energy-momentum tensor that are not due to background
fields or a cosmological constant are then given byρ and pa,b, and equations (4 - 5)
reduce to the standard Friedmann equations with an effective four-dimensional cosmo-
logical constant [4, 2]

Λ̄ =
2Λ

n+2
+

κ2

n+2

[

2W (b0)+b0W
′(b0)

]

. (9)

The remaining equation (6),

(n+2)(n−1)
kb
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= 2Λ+2κ2
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n
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]

+κ2(ρ −3pa +2pb) , (10)

however, can only be satisfied if the last term is constant [6]:

ρ −3pa +2pb = const. (11)

One possibility to achieve this is during usual four-dimensional radiation domination
(ρ = 1/3pa, pb = 0), which is expected to occur more or less directly after compactifi-
cation and stabilization has taken place, anda ≫ 1/T ≫ b. Another possibility is given
by an energy-momentum tensor dominated by vacuum energy (which has constant en-
ergy density and pressure).

In all other cases, though, it is hard to see how the constraint (11) can possibly be
satisfied. In particular, throughout most of its evolution the universe has been dominated
by non-relativistic matter with negligible pressurepa ≪ ρ . The only way to get static
extra dimensions during such a matter-dominated epoch would be to have

pb = −
1
2

ρ + const. (12)

Sinceρ is thetotal energy density, such an equation of state seems highly contrived.
Having excluded the possibility of exactly static extra dimensions during matter dom-

ination, the natural question arises how much the scalefactor b actually is expected to
vary and whether this would influence the evolution of the scalefactora in an unwanted
way. Of course, the answer to this will be model-dependent. Figure 1 shows the transi-
tion from a radiation to a matter-dominated period for two cases of particular interest.
For both one finds a considerable variation ofb as soon as the non-relativistic matter
content makes up more than about 10 percent of the total energy. Note that the evolu-
tion of a does not follow the expected pattern either (but see the discussion in the next
section).
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FIGURE 1. The evolution of the scale factorsa andb, as well as the fractional energy density in non-
relativistic matterρm/ρ for n =1 (thin), 2 (medium) and 7 (thick) with(ρm/ρ)i = 10−7. The figure
on the left is taken from [12] and shows the case of Kaluza-Klein-like dark matter in a model of so-
called universal extra dimensions [13], where the matter-dominated period is described by an equation of
statepa = 0, pb = 1/n. The right figure shows the case where the KK-contribution tothe dark matter is
negligible and one haspa = pb = 0 during matter-domination.

DIMENSIONAL REDUCTION

Let us start from the higher-dimensional action

S =
1

2κ2

∫

d4+nX
√
−g

(

R−2Λ−2κ2
Lmatter

)

(13)

and assume a metric of a slightly more general kind than (1):

gAB dXAdXB = ḡµν(xρ) dxµdxν +b2(xµ)g̃pq(y
p) dypdyq . (14)

Integrating out the extra dimensions then gives
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whereκ̂2 ≡ κ2/
∫

dny
√

g̃ andR̄ (R̃) is the curvature scalar constructed from ¯gµν (g̃pq).
The next step is to change to the Einstein frame by a conformaltransformation to a

new metric ˆgµν = bnḡµν . This leads to four-dimensional gravity minimally coupledto a

scalar fieldΦ ≡
√

n(n+2)
2κ̂2 lnb:
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, (16)

where the potential of the scalar field is given by

Veff(Φ) =
n(n−1)kb
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The theories described by (13) and (16) are completely equivalent, i.e. they result in
the same equations of motion. For the scalar field in (16), forexample, one has

�̂Φ = −V ′
eff(Φ) , (18)



whith �̂ = 1√
−ĝ

∂µ
√
−ĝ∂ µ being the Laplace-Beltrami operator for the metric ˆgµν . In

order to compare this with the results of the previous sections, we restrict ourselves
to the metric (1) and write the higher-dimensional matter part in perfect fluid form
Lmatter= ρ = ρ0a−3(1+wa)b−n(1+wb). One may now verify that (18) gives exactly (6),
from which all previous results follow [6]. The equation of motion (18) for the scalar
field thus provides a convenient way to look for static solutions of the scale factorb:
since the spatial derivatives vanish, such solutions must obey V ′

eff(Φ) = 0, and if the
extremal point ofVeff(Φ) is a minimum, one even expects these solutions to be stable.

In principle there are infinitely many, mathematically equivalent frames that are
related to each other by a conformal transformation. However, caution must be taken
as to which of the conformally related metrics one identifiesas the physical one. The
requirement that the conformally transformed system in four dimensions has positive
definite energy singles out a unique conformal factor [7, 14], which is exactly the one
that transforms to the Einstein frame (16). This suggests that ĝµν should be regarded
as the physical metric2, with dt̂ ≡ b

n
2 dt being the measured cosmological time and

â ≡ b
n
2 a the ordinary 4D scalefactor. As long as one expects approximately static extra

dimensions, however, the difference betweena and â (or t and t̂) should of course be
negligible for all practical purposes.

Another important point to notice here is thatVeff(Φ) is time-dependent through its
dependence onLmatter. So even if there existed a minimum for the effective potential at
all times of the cosmological evolution, its value would still be expected to vary during
transition periods such as from radiation to matter domination. The scale factorb would
then no longer stay constant but be driven towards the new minimum according to (18).

CONCLUSIONS

It is crucial for the viability of extra-dimensional scenarios that, for late times, the
extra dimensions are stabilized and standard cosmology canbe recovered. A wide range
of possible stabilization mechanisms can be described in a phenomenological way by
adding a ’radion potential’ of the form (7) to the action. We have shown that the
stabilization of homogeneous extra dimensions in this set-up can easily be achieved for
the radiation dominated period of the cosmological evolution as well as during vacuum-
energy domination. Surprisingly enough, however, there are generic problems during
matter domination. By allowing for different types of stabilization mechanisms, for
example of the formW (b,ρ), one might in principle get static solutions [6] - though
certainly at the cost of some serious fine-tuning (remember that is not enough to fix the
size of the extra dimensions, one also has to reproduce the correct behaviour for the 4D
scalefactor). As discussed in the last section, the size of the extra dimensions would in

2 Note that this choice results in the non-minimal coupling ofthe scalar field to the rest of the matter part,
Lmatter, that can be seen in (17) and which is absent in the Jordan frame (15). Sometimes this has been
used as an argument why one should choose the Jordan frame as the physical one, see e.g. the discussion
given in [14]. For the explicit view that all conformally related frames are not only mathematically but
also physically equivalent see [15].



any case be expected to vary during transition periods.
Problems with the stabilization of extra dimensions even arise in certain brane world

models once one allows for non-relativistic contributionsto the matter content [16]. It
would be interesting to further investigate the various existing extra-dimensional models
and see if and how they can avoid these problems, i.e. whetherthey produce the correct
late-time cosmology not only for radiation- but also for matter-domination.
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